Product Description
Medium Access Control for Wireless Body Area Networks with QoS Provisioning and Energy Efficient Design
Abstract— With the promising applications in e-Health and entertainment services, wireless body area network (WBAN) has attracted significant interest. One critical challenge for WBAN is to track and maintain the quality of service (QoS), e.g., delivery probability and latency, under the dynamic environment dictated by human mobility. Another important issue is to ensure the energy efficiency within such a resource-constrained network. In this paper, a new medium access control (MAC) protocol is proposed to tackle these two important challenges. We adopt a TDMA-based protocol and dynamically adjust the transmission order and transmission duration of the nodes based on channel status and application context of WBAN. The slot allocation is optimized by minimizing energy consumption of the nodes, subject to the delivery probability and throughput constraints. Moreover, we design a new synchronization scheme to reduce the synchronization overhead. Through developing an analytical model, we analyze how the protocol can adapt to different latency requirements in the healthcare monitoring service. Simulations results show that the proposed protocol outperforms CA-MAC and IEEE 802.15.6 MAC in terms of QoS and energy efficiency under extensive conditions. It also demonstrates more effective performance in highly heterogeneous WBAN.< final year projects >
Including Packages
Our Specialization
Support Service
Statistical Report
satisfied customers
3,589Freelance projects
983sales on Site
11,021developers
175+