Product Description
Abstract—Malware propagation in large scale networks. Malware is pervasive in networks, and poses a critical threat to network security. However, we have very limited understanding of malware behavior in networks to date. In this paper, we investigate how malware propagates in networks from a global perspective. We formulate the problem, and establish a rigorous two layer epidemic model for malware propagation from network to network. Based on the proposed model, our analysis indicates that the distribution of a given malware follows exponential distribution, < Final Year Projects > power law distribution with a short exponential tail, and power law distribution at its early, late and final stages, respectively. Extensive experiments have been performed through two real-world global scale malware data sets, and the results confirm our theoretical findings.
Including Packages
Our Specialization
Support Service
Statistical Report

satisfied customers
3,589
Freelance projects
983
sales on Site
11,021
developers
175+