Product Description
Abstract—Input vector monitoring concurrent built-in self test (BIST) schemes perform testing during the normal operation of the circuit without imposing a need to set the circuit offline to perform the test. These schemes are evaluated based on the hardware overhead and the concurrent test latency (CTL), i.e., the time required for the test to complete, whereas the circuit operates normally. In this brief, we present a novel input vector monitoring concurrent BIST scheme, which is based on the idea of monitoring a set (called window) of vectors reaching the circuit inputs during normal operation, < Final Year Projects > and the use of a static-RAM-like structure to store the relative locations of the vectors that reach the circuit inputs in the examined window; the proposed scheme is shown to perform significantly better than previously proposed schemes with respect to the hardware overhead and CTL tradeoff.
Including Packages
Our Specialization
Support Service
Statistical Report

satisfied customers
3,589
Freelance projects
983
sales on Site
11,021
developers
175+