Product Description
A Holistic Approach to Distributed Dimensionality Reduction of Big Data
Abstract— Advances in CMOS technology have made digital circuits and systems very sensitive to manufacturing variations, aging, and/or soft errors. Fault-tolerant techniques using hardware redundancy have been extensively investigated for improving reliability. Quadded logic (QL) is an interwoven redundant logic technique that corrects errors by switching them from critical to subcritical status; however, QL cannot correct errors in the last one or two layers of a circuit. In contrast to QL, quadded transistor (QT) corrects errors while performing the function < Final Year Projects 2016 >of a circuit. A technique that combines QL with QT is proposed to take advantage of both techniques. The proposed quadded logic with quadded transistor (QLQT) technique is evaluated and compared with other fault-tolerant techniques, such as triple modular redundancy and triple interwoven redundancy, using stochastic computational models. Simulation results show that QLQT has a better reliability than the other fault-tolerant techniques (except in the very restrictive case of small circuits with low gate error rates and very short paths from primary inputs to primary outputs). These results provide a new insight for implementing efficient fault-tolerant techniques in the design of reliable circuits and systems.
Including Packages
Our Specialization
Support Service
Statistical Report
satisfied customers
3,589Freelance projects
983sales on Site
11,021developers
175+