Product Description
Abstract—This paper presents a bio-inspired method for in-vivo control of blood glucose based on a model of the pancreatic β-cell. The proposed model is shown to be implementable using low-power analogue integrated circuits in CMOS, realizing a biologically faithful implementation which captures all the behaviours seen in physiology. This is then shown to be capable of glucose control using an in silico population of diabetic < Final Year Projects >subjects achieving 93% of the time in tight glycemic target (i.e., [70, 140] mg/dl) . The proposed controller is then compared with a commonly used external physiological insulin delivery (ePID) controller for glucose control. Results confirm equivalent, or superior, performance in comparison with ePID. The system has been designed in a commercially available 0.35 μm CMOS process and achieves an overall power consumption of 1.907 mW.
Including Packages
Our Specialization
Support Service
Statistical Report

satisfied customers
3,589
Freelance projects
983
sales on Site
11,021
developers
175+