Product Description
DC Microgrid for Wind and Solar Power Integration
Abstract— Operational controls are designed to support the integration of wind and solar power within microgrids. An aggregated model of renewable wind and solar power generation forecast is proposed to support the quantification of the operational reserve for day-ahead and real-time scheduling. Then, a droop control for power electronic converters connected to battery storage is developed and tested. Compared with the existing droop controls, it is distinguished in that the droop curves are set as a function of the storage state-of-charge (SOC) and can become asymmetric. The adaptation of the slopes ensures that the power output supports the terminal voltage while at the same keeping the SOC within a target range of desired operational reserve. This is shown to maintain the equilibrium of the microgrid’s real-time supply and demand. The controls are implemented for the special case of a dc microgrid that is vertically integrated within a high-rise host building of an urban area. Previously untapped wind and solar power are harvested on the roof and sides of a tower, thereby supporting delivery to electric vehicles on the ground. The microgrid vertically integrates with the host building without creating a large footprint. < final year projects >
Including Packages
Our Specialization
Support Service
Statistical Report
satisfied customers
3,589Freelance projects
983sales on Site
11,021developers
175+