Product Description
A Secure Optimum Distributed Detection Scheme
in Under-Attack Wireless Sensor Networks
Abstract– In the first place, address the problem of centralized detection of a binary event in the presence of β fraction falsifiable sensor nodes (SNs) (i.e., controlled by an attacker) for a bandwidthconstrained under − attack spatially uncorrelated distributed wireless sensor network (WSN). The SNs send their one-bit test statistics over orthogonal channels to the fusion center (FC), which linearly combines them to reach to a final decision. Adopting the modified deflection coefficient as an alternative function to be optimized,and first derive in a closed-form the FC optimal weights combining. But as these optimal weights require a − priori knowledge that cannot be attained in practice, this optimal weighted linear FC rule is not implementable. Here also derive in a closed-form the expressions for the attacker “flipping probability” (defined in paper) and the minimum fraction of compromised SNs that makes the FC incapable of detecting. Next, based on the insights gained from these expressions, we propose a novel and non-complex reliability-based strategy to identify the compromised SNs and then adapt the weights combining proportional to their assigned reliability metric. In this way, the FC identifies the compromised SNs and decreases their weights in order to reduce their contributions towards its final decision. Finally, simulation results illustrate that the proposed strategy significantly outperforms (in terms of FC’s detection capability) the existing compromised SNs identification and mitigation schemes.
Including Packages
Our Specialization
Support Service
Statistical Report
satisfied customers
3,589Freelance projects
983sales on Site
11,021developers
175+