Product Description
Efficient Deep CNN-Based Fire Detection and Localization in Video Surveillance Applications
Abstract-Convolutional neural networks (CNN) have yielded state-of-the-art performance in image classification and other computer vision tasks. Their application in fire detection systems will substantially improve detection accuracy, which will eventually minimize fire disasters and reduce the ecological and social ramifications. However, the major concern with CNN-based fire detection systems is their implementation in real-world surveillance networks, due to their high memory and computational requirements for inference. In this work, we propose an energy-friendly and computationally efficient CNN architecture, inspired by the SqueezeNet architecture for fire detection, localization, and semantic understanding of the scene of the fire. It uses smaller convolutional kernels and contains no dense, fully connected layers, which helps keep the computational requirements to a minimum. Despite its low computational needs, the experimental results demonstrate that our proposed solution achieves accuracies that are comparable to other, more complex models, mainly due to its increased depth. Moreover, the paper shows how a trade-off can be reached between fire detection accuracy and efficiency, by considering the specific characteristics of the problem of interest and the variety of fire data.
Including Packages
Our Specialization
Support Service
Statistical Report
satisfied customers
3,589Freelance projects
983sales on Site
11,021developers
175+